Accès gratuit
Numéro
Douleur analg
Volume 32, Numéro 4, Décembre 2019
Page(s) 196 - 204
Section Revue de la littérature / Literature review
DOI https://doi.org/10.3166/dea-2020-0077
Publié en ligne 18 février 2020
  • Kohn A (1959) The ecology of Conus in Hawaii. Ecol Monogr 29:47–90 [Google Scholar]
  • Endean R, Rutkin C (1963) Studies of the venom of some Conidae. Toxicon 1:49–54 [Google Scholar]
  • Endean R, Rudkin C (1965) Further studies of the venoms of Conidae. Toxicon 2:225–49 [CrossRef] [PubMed] [Google Scholar]
  • Olivera BM, McIntosh JM, Cruz LJ, et al (1984) Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 23:5087–90 [CrossRef] [PubMed] [Google Scholar]
  • Rivier J, Galyean R, Gray WR, et al (1987) Neuronal calcium channel inhibitors. Synthesis of omega-conotoxin GVIA and effects on 45Ca uptake by synaptosomes. J Biol Chem 262:1194–8 [PubMed] [Google Scholar]
  • Kerr LM, Yoshikami D (1984) A venom peptide with a novel presynaptic blocking action. Nature 308:282–4 [Google Scholar]
  • Holz GG, Dunlap K, Kream RM (1988) Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity. J Neurosci 8:463–71 [CrossRef] [PubMed] [Google Scholar]
  • McGivern JG (2007) Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat 3:69–85 [PubMed] [Google Scholar]
  • Gohil K, Bell JR, Ramachandran J, Miljanich GP (1994) Neuroanatomical distribution of receptors for a novel voltage-sensitive calcium-channel antagonist, SNX-230 (omega-conopeptide MVIIC). Brain Res 653:258–66 [CrossRef] [PubMed] [Google Scholar]
  • Lewis RJ, Dutertre S, Vetter I, Christie MJ (2012) Conus venom peptide pharmacology. Pharmacol Rev 64:259–98 [PubMed] [Google Scholar]
  • Miljanich GP (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11:3029–40 [CrossRef] [PubMed] [Google Scholar]
  • Bowersox SS, Gadbois T, Singh T, et al (1996) Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J Pharmacol Exp Ther 279:1243–9 [Google Scholar]
  • Staats PS, Yearwood T, Charapata SG, et al (2004) Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. JAMA 291:63–70 [CrossRef] [PubMed] [Google Scholar]
  • Wallace MS, Charapata SG, Fisher R, et al (2006) Intrathecal ziconotide in the treatment of chronic nonmalignant pain: a randomized, double-blind, placebo-controlled clinical trial. Neuromodulation 9:75–86 [PubMed] [Google Scholar]
  • Webster LR, Fakata KL, Charapata S, et al (2008) Open-label, multicenter study of combined intrathecal morphine and ziconotide: addition of morphine in patients receiving ziconotide for severe chronic pain. Pain Med 9:282–90 [CrossRef] [PubMed] [Google Scholar]
  • Safavi-Hemami H, Brogan SE, Olivera BM (2019) Pain therapeutics from cone snail venoms: from ziconotide to novel nonopioid pathways. J Proteomics 190:12–20 [CrossRef] [PubMed] [Google Scholar]
  • Atanassoff PG, Hartmannsgruber MW, Thrasher J, et al (2000) Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. Reg Anesth Pain Med 25:274–8 [PubMed] [Google Scholar]
  • Webster LR, Fisher R, Charapata S, Wallace MS (2009) Longterm intrathecal ziconotide for chronic pain: an open-label study. J Pain Symptom Manage 37:363–72 [Google Scholar]
  • Yu S, Li Y, Chen J, et al (2019) TAT-modified omega-Conotoxin MVIIA for crossing the blood-brain barrier. Mar Drugs 17:286 [Google Scholar]
  • Scott DA, Wright CE, Angus JA (2002) Actions of intrathecal omega-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur J Pharmacol 451:279–86 [CrossRef] [PubMed] [Google Scholar]
  • Dutertre S, Jin AH, Vetter I, et al (2014) Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun 5:3521 [PubMed] [Google Scholar]
  • Bingham JP, Mitsunaga E, Bergeron ZL (2010) Drugs from slugs--past, present and future perspectives of omega-conotoxin research. Chem Biol Interact 183:1–18 [CrossRef] [PubMed] [Google Scholar]
  • Bennett DL, Woods CG (2014) Painful and painless channelopathies. Lancet Neurol 13:587–99 [CrossRef] [PubMed] [Google Scholar]
  • Cardoso FC, Lewis RJ (2018) Sodium channels and pain: from toxins to therapies. Br J Pharmacol 175:2138–57 [CrossRef] [PubMed] [Google Scholar]
  • Green BR, Catlin P, Zhang MM, et al (2007) Conotoxins containing nonnatural backbone spacers: cladistic-based design, chemical synthesis, and improved analgesic activity. Chem Biol 14:399–407 [CrossRef] [PubMed] [Google Scholar]
  • Ekberg J, Jayamanne A, Vaughan CW, et al (2006) muOconotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc Natl Acad Sci U S A 103:17030–5 [CrossRef] [PubMed] [Google Scholar]
  • de Araujo AD, Callaghan B, Nevin ST, et al (2011) Total synthesis of the analgesic conotoxin MrVIB through selenocysteineassisted folding. Angew Chem Int Ed Engl 50:6527–9 [PubMed] [Google Scholar]
  • Dai Q, Liu F, Zhou Y, et al (2003) The synthesis of SO-3, a conopeptide with high analgesic activity derived from Conus striatus. J Nat Prod 66:1276–9 [CrossRef] [PubMed] [Google Scholar]
  • Wen L, Yang S, Qiao H, et al (2005) SO-3, a new O-superfamily conopeptide derived from Conus striatus, selectively inhibits Ntype calcium currents in cultured hippocampal neurons. Br J Pharmacol 145:728–9 [CrossRef] [PubMed] [Google Scholar]
  • Sandall DW, Satkunanathan N, Keays DA, et al (2003) A novel alpha-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42:6904–11 [CrossRef] [PubMed] [Google Scholar]
  • Poisbeau P (2016) Spinal cord mechanisms in acute and chronic pain states. In: Sommer CL, Wallace MS, Cohen SP, et al (eds). Pain 2016: refresher courses. International Association for the Study of Pain (IASP Press), Washington DC, USA, pp 15–21 [Google Scholar]
  • Malmberg AB, Gilbert H, McCabe RT, Basbaum AI (2003) Powerful antinociceptive effects of the cone snail venomderived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 101:109–16 [CrossRef] [PubMed] [Google Scholar]
  • Naser PV, Kuner R (2018) Molecular, cellular and circuit basis of cholinergic modulation of pain. Neuroscience 387:135–48 [CrossRef] [PubMed] [Google Scholar]
  • Hone AJ, McIntosh JM (2018) Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett 592:1045–62 [CrossRef] [PubMed] [Google Scholar]
  • Vincler M, Wittenauer S, Parker R, et al (2006) Molecular mechanism for analgesia involving specific antagonism of alpha9alpha10 nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A 103:17880–4 [CrossRef] [PubMed] [Google Scholar]
  • Di Cesare Mannelli L, Cinci L, Micheli L, et al (2014) Alphaconotoxin RgIA protects against the development of nerve injury-induced chronic pain and prevents both neuronal and glial derangement. Pain 155:1986–95 [CrossRef] [PubMed] [Google Scholar]
  • Romero HK, Christensen SB, Di Cesare Mannelli L, et al (2017) Inhibition of alpha9alpha10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain. Proc Natl Acad Sci U S A 114:E1825–E1832 [CrossRef] [PubMed] [Google Scholar]
  • Huynh PN, Giuvelis D, Christensen S, et al (2019) RgIA4 Accelerates recovery from paclitaxel-induced neuropathic pain in rats. Mar Drugs 18(1):12 [PubMed] [Google Scholar]
  • Satkunanathan N, Livett B, Gayler K, et al (2005) Alphaconotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res 1059:149–58 [CrossRef] [PubMed] [Google Scholar]
  • Azam L, McIntosh JM (2012) Molecular basis for the differential sensitivity of rat and human alpha9alpha10 nAChRs to alphaconotoxin RgIA. J Neurochem 122:1137–44 [CrossRef] [PubMed] [Google Scholar]
  • Clark RJ, Jensen J, Nevin ST, et al (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed Engl 49:6545–8 [PubMed] [Google Scholar]
  • Castro J, Grundy L, Deiteren A, et al (2018) Cyclic analogues of alpha-conotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. Br J Pharmacol 175:2384–98 [CrossRef] [PubMed] [Google Scholar]
  • Clineschmidt BV, McGuffin JC (1977) Neurotensin administered intracisternally inhibits responsiveness of mice to noxious stimuli. Eur J Pharmacol 46:395–6 [CrossRef] [PubMed] [Google Scholar]
  • Kleczkowska P, Lipkowski AW (2013) Neurotensin and neurotensin receptors: characteristic, structure-activity relationship and pain modulation: a review. Eur J Pharmacol 716:54–60 [CrossRef] [PubMed] [Google Scholar]
  • Craig AG, Norberg T, Griffin D, et al (1999) Contulakin-G, an O-glycosylated invertebrate neurotensin. J Biol Chem 274:13752–59 [PubMed] [Google Scholar]
  • Allen JW, Hofer K, McCumber D, et al (2007) An assessment of the antinociceptive efficacy of intrathecal and epidural contulakin-G in rats and dogs. Anesth Analg 104:1505–13 (table of contents) [CrossRef] [PubMed] [Google Scholar]
  • Kern SE, Allen J, Wagstaff J, et al (2007) The pharmacokinetics of the conopeptide contulakin-G (CGX-1160) after intrathecal administration: an analysis of data from studies in beagles. Anesth Analg 104:1514–20 (table of contents) [CrossRef] [PubMed] [Google Scholar]
  • Sang CN, Barnabe KJ, Kern SE (2016) Phase IA clinical trial evaluating the tolerability, pharmacokinetics, and analgesic efficacy of an intrathecally administered neurotensin A analogue in central neuropathic pain following spinal cord injury. Clin Pharmacol Drug Dev 5:250–8 [CrossRef] [PubMed] [Google Scholar]
  • Bryan-Lluka LJ, Bonisch H, Lewis RJ (2003) Chi-Conopeptide MrIA partially overlaps desipramine and cocaine binding sites on the human norepinephrine transporter. J Biol Chem 278:40324–9 [PubMed] [Google Scholar]
  • Sharpe IA, Palant E, Schroeder CI, et al (2003) Inhibition of the norepinephrine transporter by the venom peptide chi-MrIA. Site of action, Na+ dependence, and structure-activity relationship. J Biol Chem 278:40317–23 [PubMed] [Google Scholar]
  • Sharpe IA, Gehrmann J, Loughnan ML, et al (2001) Two new classes of conopeptides inhibit the alpha1-adrenoceptor and noradrenaline transporter. Nat Neurosci 4:902–7 [CrossRef] [PubMed] [Google Scholar]
  • Nielsen CK, Lewis RJ, Alewood D, et al (2005) Anti-allodynic efficacy of the chi-conopeptide, Xen2174, in rats with neuropathic pain. Pain 118:112–24 [CrossRef] [PubMed] [Google Scholar]
  • Okkerse P, Hay JL, Sitsen E, et al (2017) Pharmacokinetics and pharmacodynamics of intrathecally administered Xen2174, a synthetic conopeptide with norepinephrine reuptake inhibitor and analgesic properties. Br J Clin Pharmacol 83:751–63 [CrossRef] [PubMed] [Google Scholar]
  • England LJ, Imperial J, Jacobsen R, et al (1998) Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science 281:575–8 [Google Scholar]
  • Le Bars D, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6:283–304 [CrossRef] [PubMed] [Google Scholar]
  • Bannister K, Patel R, Goncalves L, et al (2015) Diffuse noxious inhibitory controls and nerve injury: restoring an imbalance between descending monoamine inhibitions and facilitations. Pain 156:1803–11 [CrossRef] [PubMed] [Google Scholar]
  • Juif PE, Poisbeau P (2013) Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats. Pain 154:1449–56 [CrossRef] [PubMed] [Google Scholar]
  • Poisbeau P, Grinevich V, Charlet A (2018) Oxytocin signaling in pain: cellular, circuit, system, and behavioral levels. Curr Top Behav Neurosci 35:193–211 [CrossRef] [PubMed] [Google Scholar]
  • Cruz LJ, de Santos V, Zafaralla GC, et al (1987) Invertebrate vasopressin/oxytocin homologs. Characterization of peptides from Conus geographus and Conus straitus venoms. J Biol Chem 262:15821–4 [PubMed] [Google Scholar]
  • Akiyama T, Carstens E (2014) Spinal coding of itch and pain. In: Carstens E, Akiyama T (eds) Itch: mechanisms and treatment. Boca Raton (FL):CRC Press/Taylor & Francis [Google Scholar]
  • van Soest PF, Kits KS (1998) Conopressin affects excitability, firing, and action potential shape through stimulation of transient and persistent inward currents in mulluscan neurons. J Neurophysiol 79:1619–32 [PubMed] [Google Scholar]
  • Dutertre S, Croker D, Daly NL, et al (2008) Conopressin-T from Conus tulipa reveals an antagonist switch in vasopressin-like peptides. J Biol Chem 283:7100–8 [PubMed] [Google Scholar]
  • Gao B, Peng C, Yang J, et al (2017) Cone snails: a big store of conotoxins for novel drug discovery. Toxins 9:397 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.